



#### **D3.1**

Delivery of standard operating procedure for all analytical approaches with respect to fruit quality and composition and sensory parameters (P1, P3, P10, P14, P15).



EUBERRY: Grant agreement no. EU FP7 KBBE - 2010 - 4 265942

EUBerry Warsaw www.jki.bund.de





# Variation of Volatile Patterns and Sensory Traits of Raspberries (*Rubus idaeus* L.) as Influenced by Cultivar, Harvest Date and Cultivation Technique

D. Ulrich<sup>1</sup>, A. Zaar<sup>2</sup> and E. Krüger<sup>2</sup>

<sup>1</sup> Julius Kühn-Institute, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Quedlinburg, Germany

<sup>2</sup> Hochschule Geisenheim University, Department of Pomology, Germany, Geisenheim, Germany




EUBERRY: Grant agreement no. EU FP7 KBBE - 2010 - 4 265942


#### Methods



### Semiquantification of VOCs in berries



Data processing: **non-targeted** approach using the software CHROMStat 2.6 by Analyt (Müllheim, Germany)



#### - Scientific aim:



Study of influence of protected cultivation on aroma patterns using different plastic material



#### -Material and methods:

Photo: University Geisenheim

Location: Experimental field at University Geisenheim, Germany

Cultivars: Glen Ample and Tulameen

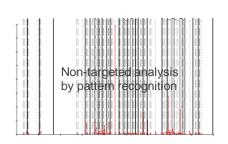
Testing facility: Long-cane plants cultivated in containers.

Treatments: i) open field (control), ii) UV-B blocking plastic, iii) UV-B window plastic

Experimental design:

2 cultivars x 3 treatments x 2 harvest dates x 3 agronomical repetitions x 2 analytical repetitions

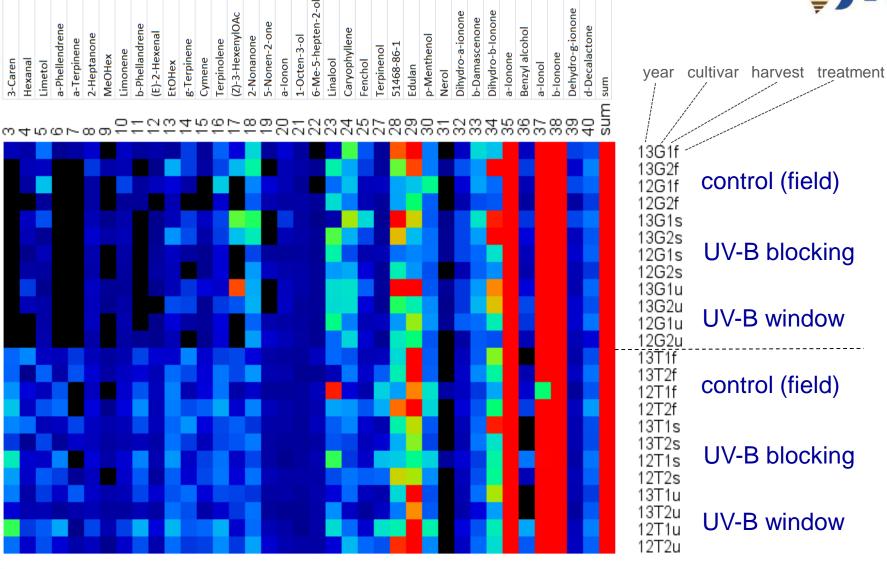
#### -Material and methods:




Analysis of raspberry volatiles (VOCs) by Headspace-SPME-GC-FID and -MS

10 mL enzym inhibited strawberry juice in 20 mL headspace vials 100 µm PDMS SPME fiber (Supelco 57300-U)

MPS2 autosampler
Agilent 6890N GC with FID for semi-quantification
Agilent 6890N GC with 5975B qMS and Agilent 7890A GC with Waters TOFMS Premier for substance identification


Data processing with CHROMStat2.6





# Heat map of 38 VOCs in dependence of year & cultivar & harvest & treatment





# ANOVA separately for two harvest years Factors: cultivar & harvest & treatment



#### Influence of cultivation factor on metabolite patterns:

- 2012: cultivar > harvest > treatment (significant differences in VOC concentrations: 30 > 24 > 11)
- 2013: cultivar > harvest > treatment (significant differences in VOC concentrations: 30 > 21 > 14)

#### Influence of cultivation factor on single metabolites:

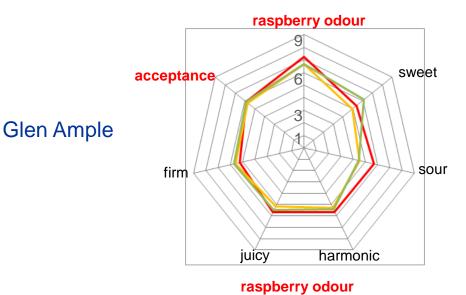
- Cultivar: Tulameen shows higher concentrations especially of monoterpenoids like

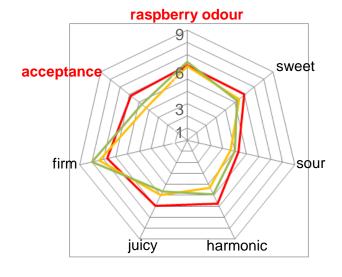
 $\begin{array}{ll} \text{3-Carene} & \text{sweet citrus} \\ \alpha\text{-Phellandrene} & \text{citrus, terpenic} \\ \alpha\text{-Terpinene} & \text{terpenic, citrus} \\ \beta\text{-Phellandrene} & \text{mint, terpenic} \end{array}$ 

Unknown (Benzopyran) floral, rose-like, passion fruit (GCO)

- Cover treatment: No uniform trend on 38 VOCs between open field and covered cultivation

Higher at UV-B window plastic:


Unknown (Benzopyran) floral, rose-like, passion fruit (GCO)

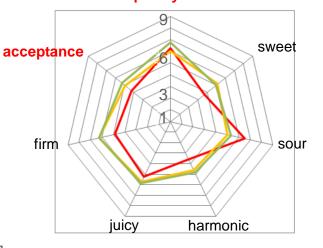

### Sensory analysis – influence of cover material

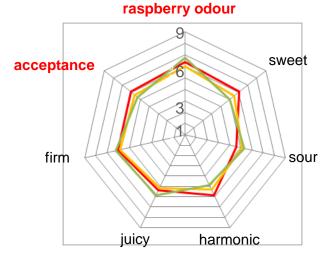


#### harvest begin









## Tulameen

open field

**UV-B** blocking

**UV-B** window





Harvest year 2012, trained sensory panel, 9-point scale, samples N = 12

## **Sensory analysis**



# Correlation analysis for the harvest year 2012 using Statistica7.1 Red labelled Pearson coefficients are significant for p < 0.05, N = 12

|                  | odor  | sweet | sour  | harmonic | juicy | firm  | acceptance |
|------------------|-------|-------|-------|----------|-------|-------|------------|
| odor             | 1.00  |       |       |          |       |       |            |
| sweet            | 0.12  | 1.00  |       |          |       |       |            |
| sour             | 0.20  | -0.67 | 1.00  |          |       |       |            |
| harmonic         | 0.40  | 0.84  | -0.37 | 1.00     |       |       |            |
| juicy            | 0.11  | 0.03  | 0.36  | 0.13     | 1.00  |       |            |
| firm             | -0.34 | 0.26  | -0.77 | -0.03    | -0.32 | 1.00  |            |
| acceptance       | 0.45  | 0.72  | -0.14 | 0.95     | 0.28  | -0.31 | 1.00       |
| Limetol          | 0.64  |       |       |          |       |       | 0.42       |
| 1-Octen-3-ol     | -0.68 |       |       |          |       |       | -0.09      |
| β-Damascenone    | 0.80  |       |       |          |       |       | 0.44       |
| α-Ionol          | 0.65  |       |       |          |       |       | 0.47       |
| Dehydro-γ-ionone | 0.85  |       |       |          |       |       | 0.53       |

#### **Conclusions**



- Headspace-SPME-GC is suitable for semi-quantification of raspberry VOC patterns.
- The investigated parameters cultivar, harvest and cover treatment influence the VOC pattern in the rank: cultivar > harvest date > treatment
- Plastic cover influences the sensory quality of the berries. Plastic cover influences raspberry odour but not the acceptance .
- The differences between UV-B blocking and UV-B window material are marginal.
- A so far unidentified compound (benzopyran?) with floral, rose-like and passion fruit-like odour is enhanced by the covered cultivation.



